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ABSOLUTELY UNIFORM ILLUMINATION
OF LASER FUSION PELLETS

For direct driven laser fusion to be successful, the spherical fuel pellet

must be illuminated to a high degree of uniformity.1 . Various symmetric beam-

target configurations have been proposed to achieve this uniformity. Most of

these designs are based on laser beams that are targeted on the spherical pellet

from the faces or vertices of the five Platonic solids (the tetrahedron, cube,

octahedron, dodecahedron, and icosahedron). 2 - 5  Given such symmetric targeting

of the laser beams, the level of uniformity still depends on the characteristics

of the laser beams (spot size on target, intensity profile) and pellet (plasma

scalelength, absorption, and refraction). A brief derivation is introduced here

that proves that absolutely uniform illumination from multiple beam

configurations is possible in certain cases. These cases include configurations

based on four of the five Platonic solids (the tetrahedron is excepted), plus an

additional class of configurations that are less symmetric.

Assume, for the moment, that refractive effects are ignorable. This is

best satisfied when the plasma scalelength is small in comparison to the pellet

radius and the plasma is highly absorbing, a situation that accurately describes

shorter wavelength experiments. The absorbed energy density on the pellet

surface resulting from a single laser beam incident along the positive z axis

is:

E(8,*) - I[X(8, ),y(8, )]A(8)cOS(8) (1)

where A(8) is the fraction of incident energy absorbed at polar angle 8. The

beam is implicitly assumed to result from large F number optics, so that the
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beam intensity profile, I, remains unchanged along the axis z in the area of the

pellet. The total energy density is the superposition of many beams centered at

the points 0,0) on the pellet surface, and can be written as

E(8,) Z I i (X.)A(Yi)cosy i  (2)

yi is the angle between the i-th beam axis and the point (8,0), and I(x.L) is

the beam intensity profile of the i-th beam in the plane orthogonal to its

propagation axis.

Assume that all of the beams are identical, symmetric about their axis of

propagation (so that Ii x I) = IY)), and that each beam is opposed by another

that is antiparallel to it and aimed at the point directly opposite on the

sphere, (T-ei,1+9. Then for the special case that the beam intensity profile

and the pellet absorption function combine so that:

I(Yi)A(Y i) = I cosy. (3)

all angular dependence can be removed from the energy density on the pellet

* surface.

To show this, insert (3) in (2) and use the identity cosy, = cosecose i +

sin~sineicos(,i-4). Rearranging the results, one finds:

ii

+ (Isin 2 ek Cos 2 k )sin 2ecos 2

+ 2 (cobeksinek coo jk)cosesinecoS"
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+ 2( coseksinek sin.jk)cosesinesinO

+ 2( jk)sin Ocos sino (4)

The targeting angles (ak,#jk) have been written so that a group of azimuthal

angles [0jk;J=1 ...... ik} is associated with each polar angle ekk1 .... K. The

total number of beams is thus N - 2 Jk .

The first requirement in achieving energy uniformity is that the last three

terms of (4) are zero. This will occur when

sinj k = j 9cs jk =

for each k. This is satisfied if the set of angles, { jk}, are symmetric in

reflections about the x and y axes. It is also satisfied when jk are equally

distributed about 2r:

{$jkf = 2 ifj/Jk j=1, ..... Jk (6)

This includes the case of odd J (see appendix A).

Next, the angles { Jkf are further constrained by the condition:

Ecos2 jk = Esin2 jk -J/2(

The {ojk } given by (6) satisfy this condition if Jk > 2 (see appendix B). With

this requirement satisfied, the energy density is independent of azimuthal angle

and is given by:

2 )Cos2 + 1/2( Jin2 sin 2 (8)
TO k G s k s



When the coefficients of the cos29 and sin28 terms are equal, the energy density

becomes independent of polar angle also. This requirement reduces to:

Pk(cos 2k - 1/3) =0 (9)

If conditions (9), (7), and (5) hold, then

E(-,)/I ° = N/6 (10)

and the energy density on the pellet has no angular dependence.

The simplest configuration for which the conditions (5), (7), and (9) can

be satisfied is K-i and J-3: j%} - 0, 120, 240*, and 6 = 54.7361. These angles

are in the direction of the faces of a cube, which is the simplest of Platonic

solids with opposing beam symmetry. The other higher order Platonic solids also

satisfy the uniformity constraints, as well as an infinite number of other less

symmetrical configurations. For example, the University of Rochester's 24 beam

Omega system 3 (aiming from the vertices of a small regular rhombicuboctahedron)

belongs to this uniformity class. Lawrence Livermore Laboratory's NOVA laser

system, 5 consisting of 5 sets of opposing beams ({t} = 0, 72, 144, 216, 2880,

and 9 - 500) is almost a member of this class (it would belong if 6 =

54.7360). In general, given K > 1 and Jk' there exists an infinite set of

configurations that satisfy the requirements.

It is possible to extend these results to more realistic situations.

Refraction considerations give rise to more general and complex conditions than

given by (1) through (3); the energy density resulting from a single laser beam

aust satisfy:

2
E(8,4) A(S) fde'I(e,)f(8',)cose, = IoOS2 (11)
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where f(' ,8) is the transmitted fraction of a ray originally incident at

angle ' and refracted to the angle 8. As a practical example, condition (11)

can be satisfied by a totally uniform beam incident upon an inverse square

electron density distribution.
4

In general, there is little control possible over the absorption or

refraction of the light once it arrives on the pellet. Instead, some tailoring

of the absorbed energy may possibly be accomplished through control of the laser

intensity profile, perhaps by using apodized aperatures or other spatial

filtering methods.

The question of inter-beam interference effects should also be

considered. For coherent laser beams separated by a minimum angle i, the

spatial intensity fluctuations created by interference patterns have a maximum

spatial wavelength, X, given by X X /sin* - X where X is the laser
0 o 0

wavelength, and sin* is of order unity for typical systems.6  Any

nonuniformities in the deposited energy produced by this highly modulated

intensity distribution are easily smoothed by thermal conduction in the region

separating the absorption and ablation regions of the laser fusion pellet.1

Interference effects are unimportant for incoherent illumination sources,

including induced incoherent laser beams 7 as well as ion or electron beams.

In conclusion, it has been shown here that it is theoretically possible to

illuminate a sphere in an absolutely uniform manner. The conditions for doing

so are: 1) that the energy density resulting from any one laser beam is given

by (11); 2) that to each beam belongs an opposing beam situated at the opposite

point on the sphere; and 3) that the beam targeting angles satisfy the

conditions (5), (7), and (9). These three constraints are satisfied for an

i 5
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infinite set of configurations, including the cube and higher order Platonic

solids. These configurations can be used to achieve the high degred of energy

deposition uniformity required for proper implosion of laser fusion fuel

pellets.

The author would like to thank Dr. S. Bodner for valuable discussions and

suggestions. This work was done while the author was an NRC-NRL research

associate, and was supported by the U.S. Department of Energy and Office of

Naval Research.
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Appendix A

If ij} is symmetric about reflections in the x and y axis, then for

each s' there exists a #' such that ' -. ', and another such that.j = -

Then clearly ZsinO. = 0, Zcos;. = 0, and Zcos sintpn = 0. The 1} given by
I j 3 3 I 3 3

(6) for even J is obviously a special case of this. A separate situation exists

when J is odd. In this case, Zsino. = 0 and Z sin.coso. = 0, since the set is

symmetric in reflection about the x axis. in additi.on,

Zcos(2ffj/J) 1/2{t[cos(2nj/J) + cos(2w[j-1]/J)]; (A-I)33

= cos(T/J)'cos(2ir[j-1/2jJ)
3

The set of angles in the sum on the right side is the reflection of the original

set about the y axis. But these sets are antisymmetric in reflection about the

y axis:

Zcos(21j/J) a -Zcos(2irj/J + 7t) = -Zcos(2f[j-1/21/J) (A-2)
3 3 3

Thus, if cos(,r/J) * 1 (or J * 1), we conclude that rcos(2wj/J) = 0, and3

therefore (6) satisfies condition (5) for odd and even J.
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Appendix B

To show that (6) satisfies (7), note that

Zcos 2(2j/J) = 1/2(J + Zcos(4wj/J)) (B-1)
I J

If J is even (J=2r, where r is integer), then

Zcos 2(2nj/J) = 1/2(J + Zcos(2yrj/r)) - J/2 (B-2)J J

according to the results in Appendix A.

if J is odd, then

Zcos 2(27ij/J) + Zcos2 (7r-2tj/J) = J (B-3)J J

by (B-2). But

Zcos 2(2nj/J) = Zcos2 (.-2wj/J) (B-4)
/J J

and therefore

.cos2 (2rj/J) = J/2 (B-5,3

Thus, j} given by (6) satisfied condition (7) for even and odd J.
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